

Федеральное государственное бюджетное научное учреждение

ОДОБРЕНА РЕШЕНИЕМ ФЕДЕРАЛЬНОГО УЧЕБНО-МЕТОДИЧЕСКОГО ОБЪЕДИНЕНИЯ ПО ОБЩЕМУ ОБРАЗОВАНИЮ,

протокол 3/21 от 27.09.2021 г.

ПРИМЕРНАЯ РАБОЧАЯ ПРОГРАММА ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ

МАТЕМАТИКА

БАЗОВЫЙ УРОВЕНЬ

(для 5-9 классов образовательных организаций)

МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Министерство образования Самарской области Юго-Западное управление министерства образования Самарской области ГБОУ СОШ пос. Алексеевский

Vтвержлено

Согласовано

Ответственный за УР Ардашникова Ю. А	И О директора ГБОУ СОШ пос. Алексеевский Давыдкина И. Н. Приказ № 86/5 от «30» августа 2024 г.
РАБОЧАЯ ПІ	РОГРАММА
Предмет (к	ypc)
<u>Геометр</u>	<u>ия</u>
Класс 9	<u>.</u>
Количество часов по учебному п	лану 68 в год, 2 в неделю.
Учебники:	a.
Автор: А.Г. Мерзляк, В.Б. Полонский, М.С Наименование: Геометрия, 9 класс Издательство, год: Москва, Вентана-Гр	•
Рассмотрена на заседании МО <u>естес</u> Протокол № <u>1</u> от « <u>30</u> » <u>августа</u> 2024 г. Председатель МО	твенно-математического цикла _ Г. А. Кокорева

ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОГО ПРЕДМЕТА «МАТЕМАТИКА»

рабочая Примерная программа по математике обучающихся 5—9 разработана классов на основе Федерального государственного образовательного стандарта общего образования с учётом и современных требований, предъявляемых к математическому образованию, и традиций российского образования, которые обеспечивают овладение ключевыми компетенциями. непрерывного образования и составляющими основу для общекультурного, целостность саморазвития, также личностного и познавательного развития обучающихся. В рабочей программе учтены идеи и положения Концепции математического образования Российской В Федерации. В эпоху цифровой трансформации всех сфер человеческой деятельности невозможно стать образованным без базовой современным человеком математической подготовки. Уже В школе математика служит опорным предметом для изучения смежных дисциплин, а после школы необходимостью становится образование, что требует полноценной базовой общеобразовательной подготовки, В TOM математической. Это обусловлено тем, что в наши дни растёт профессий, связанных непосредственным c применением математики: и в сфере экономики, и в бизнесе, и в технологических областях, и даже в гуманитарных сферах. Таким образом, круг школьников, для которых математика может стать значимым

предметом, расширяется.

Практическая полезность математики обусловлена тем, что её предметом являются фундаментальные структуры нашего мира: пространственные формы и количественные отношения от простейших, усваиваемых в непосредственном опыте, до достаточно сложных, необходимых для развития научных и прикладных идей. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие И интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять расчёты и составлять алгоритмы, находить и применять формулы, владеть практическими приёмами геометрических измерений и построений, читать информацию, представленную в виде таблиц, диаграмм и графиков, жить в условиях неопределённости и понимать вероятностный характер случайных событий.

Одновременно с расширением сфер применения математики современном обществе всё более важным математический мышления. проявляющийся стиль определённых умственных навыках. В процессе изучения математики в арсенал приёмов и методов мышления человека естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений, правила их конструирования раскрывают механизм логических построений, способствуют выработке умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление. Ведущая роль принадлежит математике и в формировании алгоритмической компоненты мышления И vмений действовать ПО заланным алгоритмам, совершенствовать известные и конструировать новые. процессе решения задач — основой учебной деятельности на уроках математики — развиваются также творческая прикладная стороны мышления.

Обучение математике даёт возможность развивать у обучающихся точную, рациональную и информативную речь, умение отбирать наиболее подходящие языковые, символические, графические средства для выражения суждений и наглядного ихпредставления.

Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методах математики, их отличий от методов других естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач. Таким образом, математическое образование вносит свой вклад в формирование общейкультуры человека.

Изучение математики также способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.

ЦЕЛИ И ОСОБЕННОСТИ ИЗУЧЕНИЯ УЧЕБНОГО ПРЕДМЕТА «МАТЕМАТИКА». 5-9 КЛАССЫ

Приоритетными целями обучения математике в 5—9 классах являются:

- формирование центральных математических понятий (число, величина, геометрическая фигура, переменная, вероятность, функция), обеспечивающих преемственность и перспективность математического образования обучающихся;
- подведение обучающихся на доступном для них уровне к осознанию взаимосвязи математики и окружающего мира, понимание математики как части общей культуры человечества;
- развитие интеллектуальных и творческих способностей обучающихся, познавательной активности, исследовательских умений, критичности мышления, интереса к изучению математики;
- формирование функциональной математической грамотности: умения распознавать проявления математических понятий, объектов и закономерностей в реальных жизненных ситуациях и при изучении других учебных предметов, проявления зависимостей и закономерностей, формулировать их на языке математики и создавать математические модели, применять освоенный математический аппарат для решения практико-ориентированных задач, интерпретировать и оценивать полученные результаты.

линии содержания курса математики в 5—9 классах: «Числа и вычисления», «Алгебра» («Алгебраические «Уравнения неравенства»), «Функции», выражения», И («Геометрические фигуры и их свойства», «Геометрия» «Измерение геометрических величин»), «Вероятность статистика». Дан ные линии развиваются параллельно, каждая в соответствии с собственной логикой, однако не независимо одна от другой, а втесном контакте и взаимодействии. Кроме этого, их объединяет логическая составляющая, традиционно присущая математике и пронизывающая все математические курсы и содержательные линии. Сформулированное в Федеральном государственном образовательном стандарте основного общего требование «уметь оперировать образования понятиями: определение, аксиома, теорема, доказательство; распознавать истинные и ложные высказывания, приводить примеры и контрпримеры, строить высказывания и отрицания высказываний» относится ко всем курсам, а формирование логических умений распределяется по всем годам обучения на уровне основного общего образования. Содержание образования, соответствующее предметным результатам освоения Примерной рабочей программы, распределённым по годам структурировано таким образом, чтобы ко всем основным, обучающиеся принципиальным вопросам неоднократно, чтобы овладение математическими понятиями и навыками осуществлялось последовательно и поступательно, с соблюдением принципа преемственности, а новые включались в общую систему математических представлений обучающихся, расширяя и углубляя её, образуя множественные связи.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА «МАТЕМАТИКА» НА УРОВНЕ ОСНОВНОГО ОБШЕГО ОБРАЗОВАНИЯ

Освоение **учебного** предмета «Математика» должно обеспечивать достижение на уровне основного обшего образования следующих личностных, метапредметных предметных образовательных результатов:

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

Личностные результаты освоения программы учебного предмета «Математика» характеризуются:

Патриотическое воспитание:

проявлением интереса к прошлому и настоящему российской математики, ценностным отношением к достижениям российских математиков и российской математической школы, к использованию этих достижений в других науках и прикладных сферах.

Гражданское и духовно-нравственное воспитание:

готовностью к выполнению обязанностей гражданина и реализации его прав, представлением о математических основах функционирования различных структур, явлений, процедур гражданского общества (выборы, опросы и пр.); готовностью к обсуждению этических проблем, связанных с практическим применением достижений науки, осознанием важности морально-этических принципов в деятельности учёного.

Трудовое воспитание:

установкой на активное участие в решении практических задач математической направленности, осознанием важности математического образования на протяжении всей жизни для успешной профессиональной деятельности и развитием необходимых умений; осознанным выбором и построением индивидуальной траектории образования и жизненных планов с учётом личных интересов и общественных потребностей.

Эстетическое воспитание:

способностью к эмоциональному и эстетическому восприятию математических объектов, задач, решений, рассуждений; умению видеть математические закономерности в искусстве.

Ценности научного познания:

ориентацией в деятельности на современную систему научных представлений об основных закономерностях развития человека, природы и общества, пониманием математической науки как сферы человеческой деятельности, этапов её развития и значимости для развития цивилизации; овладением языком математики и математической культурой как средством познания мира; овладением простейшими навыками исследовательской деятельности.

Физическое воспитание, формирование культуры здоровья и эмоционального благополучия:

готовностью применять математические знания в интересах своего здоровья, ведения здорового образа жизни (здоровое питание, сбалансированный режим занятий и отдыха, регулярная физическая активность); сформированностью навыка рефлексии, признанием своего права на ошибку и такого же права другого человека.

Экологическое воспитание:

ориентацией на применение математических знаний для решения задач в области сохранности окружающей среды, планирования поступков и оценки их возможных последствий для окружающей среды; осознанием глобального характера экологических проблем и путей их решения.

Личностные результаты, обеспечивающие адаптацию обучающегося к изменяющимся условиям социальной и природной среды:

готовностью к действиям в условиях неопределённости, повышению уровня своей компетентности через практическую деятельность, в том числе умение учиться у других людей, приобретать в совместной деятельности новые знания, навыки и компетенции из опыта других;

необходимостью в формировании новых знаний, в том числе формулировать идеи, понятия, гипотезы об объектах и явлениях, в том числе ранее не известных, осознавать дефициты собственных знаний и компетентностей, планировать своё развитие;

способностью осознавать стрессовую ситуацию, воспринимать стрессовую ситуацию как вызов, требующий контрмер, корректировать принимаемые решения и действия, формулировать и оценивать риски и последствия, формировать опыт.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Метапредметные результаты освоения программы учебного предмета «Математика» характеризуются овладением универсальными познавательными действиями, универсальными коммуникативными действиями и универсальными регулятивными действиями.

1) Универсальные познавательные действия обеспечивают формирование базовых когнитивных процессов обучающихся (освоение методов познания окружающего мира; применение логических, исследовательских операций, умений работать с информацией).

Базовые логические действия:

- выявлять и характеризовать существенные признаки математических объектов, понятий, отношений между понятиями; формулировать определения понятий; устанавливать существенный признак классификации, основания для обобщения и сравнения, критерии проводимого анализа;
- воспринимать, формулировать и преобразовывать суждения: утвердительные и отрицательные, единичные, частные и общие; условные;
- выявлять математические закономерности, взаимосвязи и противоречия в фактах, данных, наблюдениях и утверждениях; предлагать критерии для выявления закономерностей и противоречий;
- делать выводы с использованием законов логики, дедуктивных и индуктивных умозаключений, умозаключений по аналогии:
- разбирать доказательства математических утверждений (прямые и от противного), проводить самостоятельно несложные доказательства математических фактов, выстраивать аргументацию, приводить примеры и контрпримеры; обосновывать собственные рассуждения;
- выбирать способ решения учебной задачи (сравнивать несколько вариантов решения, выбирать наиболее подходящийс учётом самостоятельно выделенных критериев).

Базовые исследовательские действия:

— использовать вопросы как исследовательский инструмент познания; формулировать вопросы, фиксирующие противоречие, проблему, самостоятельно устанавливать искомое и данное,

формировать гипотезу, аргументировать свою позицию, мнение;

- проводить по самостоятельно составленному плану несложный эксперимент, небольшое исследование по установлению особенностей математического объекта, зависимостей объектов между собой;
- самостоятельно формулировать обобщения и выводы по результатам проведённого наблюдения, исследования, оценивать достоверность полученных результатов, выводов и обобщений;
- прогнозировать возможное развитие процесса, а также выдвигать предположения о его развитии в новых условиях.

Работа с информацией:

- выявлять недостаточность и избыточность информации, данных, необходимых для решения задачи;
- выбирать, анализировать, систематизировать и интерпретировать информацию различных видов и форм представления;
- выбирать форму представления информации и иллюстрировать решаемые задачи схемами, диаграммами, иной графикой и их комбинациями;
- оценивать надёжность информации по критериям, предложенным учителем или сформулированным самостоятельно.
 - 2) Универсальные коммуникативные действия обеспечивают сформированность социальных навыков обучающихся.

Общение:

- воспринимать и формулировать суждения в соответствии с условиями и целями общения; ясно, точно, грамотно выражать свою точку зрения в устных и письменных текстах, давать пояснения по ходу решения задачи, комментировать полученный результат;
- в ходе обсуждения задавать вопросы по существу обсуждаемой темы, проблемы, решаемой задачи, высказывать идеи, нацеленные на поиск решения; сопоставлять свои суждения с суждениями других участников диалога, обнаруживать различие и сходство позиций; в корректной форме формулировать разногласия, свои возражения;
- представлять результаты решения задачи, эксперимента, исследования, проекта; самостоятельно выбирать формат выступления с учётом задач презентации и особенностей аудитории.

Сотрудничество:

- понимать и использовать преимущества командной и индивидуальной работы при решении учебных математических задач;
- принимать цель совместной деятельности, планировать организацию совместной работы, распределять виды работ, договариваться, обсуждать процесс и результат работы; обобщать мнения нескольких людей;
- участвовать в групповых формах работы (обсуждения, обмен мнениями, мозговые штурмы и др.); выполнять свою часть работы и координировать свои действия с другими членами команды; оценивать качество своего вклада в общий продукт по критериям, сформулированным участниками взаимодействия.
 - 3) Универсальные регулятивные действия обеспечивают формирование смысловых установок и жизненных навыков личности.

Самоорганизация:

— самостоятельно составлять план, алгоритм решения задачи (или его часть), выбирать способ решения с учётом имеющих ся ресурсов и собственных возможностей, аргументировать и корректировать варианты решений с учётом новой информации.

Самоконтроль:

- владеть способами самопроверки, самоконтроля процесса и результата решения математической задачи;
- предвидеть трудности, которые могут возникнуть при решении задачи, вносить коррективы в деятельность на основе новых обстоятельств, найденных ошибок, выявленных трудностей;
- оценивать соответствие результата деятельности поставленной цели и условиям, объяснять причины достижения или недостижения цели, находить ошибку, давать оценку приобретённому опыту.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Развитие логических представлений и навыков логического мышления осуществляется на протяжении всех лет обучения в основной школе в рамках всех названных курсов. Предполагается, что выпускник основной школы сможет строить высказывания и отрицания высказываний, распознавать истинные и ложные высказывания, приводить примеры и контрпримеры, овладеет понятиями: определение,

аксиома, теорема, доказательство — и научится использовать их при выполнении учебных и внеучебных задач.

ПРИМЕРНАЯ РАБОЧАЯ ПРОГРАММА УЧЕБНОГО КУРСА «ГЕОМЕТРИЯ». 7 9 КЛАССЫ

ЦЕЛИ ИЗУЧЕНИЯ УЧЕБНОГО КУРСА

«Математику уже затем учить надо, что она ум в порядок писал великий русский ученый Михаил Васильевич Ломоносов. И в этом состоит одна из двух целей обучения геометрии как составной части математики в школе. Этой цели соответствует доказательная линия преподавания геометрии. Следуя представленной рабочей программе, начиная с седьмого класса на уроках геометрии обучающийся учится проводить доказательные рассуждения, строить логические умозаключения, доказывать истинные утверждения и строить контрпримеры к ложным, проводить рассуждения противного», отличать свойства от признаков, формулировать обратные утверждения. Ученик, овладевший рассуждать, будет применятьего и в окружающей жизни. Как писал геометр и педагог Игорь Федорович Шарыгин, «людьми, понимающими, что такое доказательство, трудно и даже невозможно манипулировать». И в этом состоит важное воспитательное значение изучения геометрии, именно отечественной математической школе. Вместе с тем авторы программы предостерегают учителя от излишнего формализма, особенно в отношении начал и оснований геометрии. Французский математик Жан Дьедонне по этому поводу высказался так: «Что касается деликатной проблемы введения «аксиом», то мне кажется, что на первых порах нужно вообще избегать произносить само это слово. С другой же стороны, не следует упускать возможности давать примеры логических заключений. которые куда в большей мере, чем идея аксиом, являются истинными и единственными

двигателями математического мышления».

Второй целью изучения геометрии является использование её как инструмента при решении как математических, так и практических задач, встречающихся в реальной жизни. Окончивший курс геометрии школьник должен быть в состоянии определить геометрическую фигуру, описать словами данный чертёж или рисунок, найти площадь земельного участка, рассчитать необходимую длину оптоволоконного кабеля или требуемые размеры гаража для

автомобиля. Этому соответствует вторая, вычислительная линия в изучении геометрии в школе. Данная практическая линия является не менее важной, чем первая. Ещё Платон предписывал, чтобы «граждане Прекрасного города ни в коем случае не оставляли геометрию, ведь немаловажно даже побочное её применение — в военном деле да, впрочем, и во всех науках — для лучшего их усвоения: мы ведь знаем, какая бесконечная разница существует между человеком причастным И непричастным». Для этого рекомендуется подбирать задачи практического характера для рассматриваемых тем, учить детей строить математические модели реальных жизненных ситуаций, проводить вычисления и оценивать адекватность полученного результата. Крайне важно подчёркивать связи геометрии с другими предметами, мотивировать использовать определения геометрических фигур и понятий, демонстрировать применение полученных умений в физике и технике. Эти связи наиболее ярко видны в темах «Векторы», «Тригонометрические соотношения». координат»и «Теорема Пифагора».

В заключение сошлёмся на великого математика и астронома Иоганна Кеплера, чтобы ещё раз подчеркнуть и метапредметное, и воспитательное значение геометрии: "Geometria una et aeterna est in mente Dei refulgens: cuius consortium hominibus tributum inter causas est, cur homo sit imago Dei".

МЕСТО УЧЕБНОГО КУРСА В УЧЕБНОМ ПЛАНЕ

Согласно учебному плану в 9 классе изучается учебный курс «Геометрия», который включает следующие основные разделы содержания: «Геометрические фигуры и их свойства»,

«Измерение геометрических величин», а также «Декартовы координаты на плоскости», «Векторы», «Движения плоскости» и «Преобразования подобия».

Учебный план предусматривает изучение геометрии на базовом уровне, исходя из не менее 68 учебных часов в учебном году.

15

СОДЕРЖАНИЕ УЧЕБНОГО КУРСА (ПО ГОДАМ ОБУЧЕНИЯ)

9 класс

Синус, косинус, тангенс углов от 0 до 180°. Основное тригонометрическое тождество. Формулы приведения.

Решение треугольников. Теорема косинусов и теорема синусов. Решение практических задач с использованием теоремыкосинусов и теоремы синусов.

Преобразование подобия. Подобие соответственных элементов.

Теорема о произведении отрезков хорд, теоремы о произведении отрезков секущих, теорема о квадрате касательной.

Вектор, длина (модуль) вектора, сонаправленные векторы, противоположно направленные векторы, коллинеарность векторов, равенство векторов, операции над векторами. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Скалярное произведение векторов, применение для нахождения длин и углов.

Декартовы координаты на плоскости. Уравнения прямой и окружности в координатах, пересечение окружностей и прямых. Метод координат и его применение.

Правильные многоугольники. Длина окружности. Градусная и радианная мера угла, вычисление длин дуг окружностей. Площадь круга, сектора, сегмента.

Движения плоскости и внутренние симметрии фигур (элементарные представления). Параллельный перенос. Поворот.

ПЛАНИРУЕМЫЕ ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ПРИМЕРНОЙ РАБОЧЕЙ ПРОГРАММЫ КУРСА (ПО ГОДАМ ОБУЧЕНИЯ)

Освоение учебного курса «Геометрия» на уровне основного общего образования должно обеспечивать достижение следующих предметных образовательных результатов:

9 класс

- Знать тригонометрические функции острых углов, находить с их помощью различные элементы прямоугольного треугольника («решение прямоугольных треугольников»). Находить (с помощью калькулятора) длины и углы для нетабличных значений.
- Пользоваться формулами приведения и основным тригонометрическим тождеством для нахождения соотношений между тригонометрическими величинами.
- Использовать теоремы синусов и косинусов для нахождения различных элементов треугольника («решение треугольников»), применять их при решении геометрических залач.
- Владеть понятиями преобразования подобия, соответственных элементов подобных фигур. Пользоваться свойствами подобия произвольных фигур, уметь вычислять длины и находить углы у подобных фигур. Применять свойства подобия в практических задачах. Уметь приводить примеры подобных фигур в окружающем мире.
- Пользоваться теоремами о произведении отрезков хорд, о произведении отрезков секущих, о квадрате касательной.
- Пользоваться векторами, понимать их геометрический и физический смысл, применять их в решении геометрических и физических задач. Применять скалярное произведение векторов для нахождения длин и углов.
- Пользоваться методом координат на плоскости, применять его в решении геометрических и практических задач.
- Владеть понятиями правильного многоугольника, длины окружности, длины дуги окружности и радианной меры угла, уметь вычислять площадь круга и его частей. Применять полученные умения в практических задачах.
- Находить оси (или центры) симметрии фигур, применять движения плоскости в простейших случаях.

— Применять полученные знания на практике — строить математические модели для задач реальной жизни и проводить соответствующие вычисления с применением подобия и тригонометрических функций (пользуясь, где необходимо, калькулятором).

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ УЧЕБНОГО КУРСА

9 класс (не менее 68 ч)

Название раздела (темы) курса (число часов)	Основное содержание	Основные виды деятельности обучающихся
Тригонометрия. Теоремы косинусов и синусов. Решение треугольников (16 ч)	Определение тригонометрических функций углов от 0° до 180°. Косинус и синус прямого и тупого угла. Теорема косинусов. (Обобщённая) теорема синусов (с ради-усом описанной окружности). Нахождение длин сторон и величин углов треугольников. Формула площади треугольника через две стороны и угол между ними. Формула площади четырёхугольника через его диагонали и угол между ними. Практическое применение доказанных теорем	Формулировать определения тригонометрических функций тупых и прямых углов. Выводить теорему косинусов и теорему синусов (с радиусом описанной окружности). Решать треугольники. Решать практические задачи, сводящиеся к нахождению различных элементов треугольника

Преобразование подобия. Метрические соотношения в окружности (10 ч)	Понятие о преобразовании подобия. Соответственные элементы подобных фигур. Теорема о произведении отрезков хорд, теорема о произведении отрезков секущих, теорема о квадрате касательной. Применение в решении геометрических задач	Осваивать понятие преобразования подобия. Исследовать отношение линейных элементов фигур при преобразовании подобия. Находить примеры подобия в окружающей действительности. Выводить метрические соотношения между отрезками хорд, секущих и касательных с использованием вписанных углов и подобных треугольников. Решать геометрические задачи и задачи из реальной жизни с использованием подобных треугольников
Векторы(12 ч)	Определение векторов, сложение и разность векторов, умножение вектора на число. Физический и геометрический смысл векторов. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Скалярное произведение векторов, его применение для нахождения длин и углов. Решение задач с помощью векторов. Применение векторов для решения задач кинематики и механики	Использовать векторы как направленные отрезки, исследовать геометрический (перемещение) и физический (сила) смыслы векторов. Знать определения суммы и разности векторов, умножения вектора на число, исследовать геометрический и физический смыслы этих операций. Решать геометрические задачи с использованием векторов. Раскладывать вектор по двум неколлинеарным векторам. Использовать скалярное произведение векторов, выводить его основные свойства. Вычислять сумму, разность и скалярное произведение векторов в координатах. Применять скалярное произведение для нахождения длин и углов

Декартовы координаты на плоскости (9 ч)	Декартовы координаты точек на плоскости. Уравнение прямой. Угловой коэффициент, тангенс угла наклона, параллельные и перпендикулярные прямые. Уравнение окружности.	Осваивать понятие прямоугольной системы координат, декартовых координат точки. Выводить уравнение прямой и окружности. Выделять полный квадрат для нахождения центраи радиуса окружности по её уравнению. Решать задачи на нахождение точек пересечения прямых и окружностей с помощью метода координат.
	Нахождение координат точек пересечения окружности и прямой. Метод координат при решении геометрических задач. Использование метода координат в практических задачах	Использовать свойства углового коэффициента прямой при решении задач, для определения расположения прямой. Применять координаты при решении геометрических и практических задач, для построения математических моделей реальных задач («метод координат»). Пользоваться для построения и исследований
		цифровыми ресурсами. Знакомиться с историей развития геометрии

Название раздела (темы) курса (число часов)	Основное содержание	Основные виды деятельности обучающихся
Правильные многоугольники. Длина окружности и площадь круга. Вычисление площадей (8 ч)	Правильные многоугольники, вычисление их элементов. Число π и длина окружности. Длина дуги окружности. Радианная мера угла. Площадь круга и его элементов (сектора и сегмента). Вычисление площадей фигур, включающих элементы круга	Формулировать определение правильных многоугольников, находить их элементы. Пользоваться понятием длины окружности, введённым с помощью правильных многоуголников, определять число π, длину дуги и радианную меру угла. Проводить переход от радианной меры угла к градусной и наоборот. Определять площадь круга. Выводить формулы (в градусной и радианной мере) для длин дуг, площадей секторов и сегментов. Вычислять площади фигур, включающих элементы окружности (круга). Находить площади в задачах реальной жизни

Движения плоскости (6 ч)	Понятие о движении плоскости. Параллельный перенос, поворот и симметрия. Оси и центры симметрии. Простейшие применения в решении задач	Разбирать примеры, иллюстрирующие понятия движения, центров и осей симметрии. Формулировать определения параллельного переноса, поворота и осевой симметрии. Выводить их свойства, находить неподвижные точки. Находить центры и оси симметрий простейших фигур. Применять параллельный перенос и симметрию при решении геометрических задач (разбирать примеры). Использовать для построения и исследований цифровые ресурсы
Повторение, обобщение, систематизация знаний (7 ч)	Повторение основных понятий и методов курсов 7—9 классов, обобщение и систематизация знаний. Простейшие геометрические фигуры и их свойства. Измерение геометрических величин. Треугольники. Параллельные и перпендикулярные прямые. Окружность и круг. Геометрические построения. Углы в окружности. Вписанные и описанные и окружности многоугольников. Прямая и окружность. Четырёхугольники. Вписанные и	Оперировать понятиями: фигура, точка, прямая, угол, многоугольник, равнобедренный и равносторонний треугольники, прямоугольный треугольник, медиана, биссектриса и высота треугольника, параллелограмм, ромб, прямоугольник, квадрат, трапеция; окружность, касательная; равенство и подобие фигур, треугольников; параллельность и перпендикулярность прямых, угол между прямыми, симметрия относительно точки и прямой; длина, расстояние, величина угла, площадь, периметр. Использовать формулы: периметра и площади многоугольников, длины окружности и площади круга, объёма прямоугольного параллелепипеда.

описанные четырехугольники. Теорема Пифагора и начала тригонометрии. Решение общих треугольников. Правильные многоугольники. Преобразования плоскости. Движения. Подобие. Симметрия. Площадь. Вычисление площадей. Площади подобных фигур. Декартовы координаты на плоскости. Векторы на плоскости

Оперировать понятиями: прямоугольная система координат, вектор; использовать эти понятия для представления данных и решения задач, в том числе из других учебных предметов. Решать задачи на повторение основных понятий, иллюстрацию связей между различными частями курса. Выбирать метод для решения задачи.

Решать задачи из повседневной жизни

При разработке рабочей программы в тематическом планировании должны быть учтены возможности использования электронных (цифровых) образовательных ресурсов, являющихся учебно-методическими материалами (мультимедийные программы, электронные учебники и задачники, электронные библиотеки, виртуальные лаборатории, игровые программы, коллекции цифровых образовательных ресурсов), используемыми для обучения и воспитания различных групп пользователей, представленными в электронном (цифровом) виде и реализующими дидактические возможности ИКТ, содержание которых соответствует законодательству об образовании.