Государственное бюджетное общеобразовательное учреждение Самарской области средняя общеобразовательная школа имени Героя Советского Союза И.Е. Болесова пос. Алексеевский муниципального района Красноармейский Самарской области

Проверено	Утверждаю
Ответственный за УР	Директор ГБОУ СОШ пос. Алексеевский
И. Н. Давыдкина (подпись) « <u>29</u> » <u>августа</u> 2022 г.	Л. В. Зимина (подпись) « <u>29</u> » <u>августа</u> 2022 г.

РАБОЧАЯ ПРОГРАММА

Предмет (курс) модульный

Математика (базовый уровень)

Класс 10 - 11

Количество часов по учебному плану $\underline{170}$ в год, $\underline{5}$ в неделю.

Учебники:

Автор: А.Г. Мерзляк, Д.А. Номировский, В.М. Поляков, под ред. В.Е. Подольского

Наименование: Алгебра (базовый уровень) 10 класс

Издательство, год: Москва, Вентана-Граф, 2020

Автор: А.Г. Мерзляк, Д.А. Номировский, В.М. Поляков, под ред. В.Е. Подольского

Наименование: Алгебра (базовый уровень) 11 класс

Издательство, год: Москва, Вентана-Граф, 2020

Автор: А.Г. Мерзляк, В.Б. Полонский, В.М. Поляков, под ред. В.Е. Подольского

Наименование: Геометрия (базовый уровень) 10 класс

Издательство, год: Москва, Вентана-Граф, 2021

Автор: А.Г. Мерзляк, В.Б. Полонский, В.М. Поляков, под ред. В.Е. Подольского

Наименование: Геометрия (базовый уровень) 11 класс

Издательство, год: Москва, Вентана-Граф, 2021

Рассмотрена на заседании МО ес	стественно-математического цикла
Протокол № <u>1</u> от « <u>29</u> » <u>августа</u> 2	022 г.
Председатель МО	Г. А. Кокорева

Рабочая программа разработана на основе программы и примерного тематического планирования курса алгебры и начал математического анализа 10-11 классов общеобразовательных учреждений, созданных на основе единой концепции преподавания математики в средней школе, разработанных А.Г. Мерзляком, В.Б. Полонским, М.С. Якиром - авторами учебника Алгебра и начала математического анализа 10 класс, включённого в систему «Алгоритм успеха» Математика: 5-11 классы/ А.Г. Мерзляк, В.Б. Полонский, М.С. Якир, Е.В. Буцко,- М: «Вентана-Граф», 2018

Общая характеристика программы

Программа по математике составлена на основе Фундаментального ядра содержания общего образования, требований к результатам освоения образовательной программы среднего общего образования, представленных в федеральном государственном образовательном стандарте среднего общего образования, с учётом преемственности с примерными программами для основного общего образования но математике. В ней также учитываются доминирующие идеи и положения программы развития и формирования универсальных учебных действий для основного общего образования, которые обеспечивают формирование российской гражданской идентичности, коммуникативных качеств личности и способствуют формированию ключевой компетенции — умения учиться.

Программа по математике направлена на реализацию системно - деятельностного подхода к процессу обучения, который обеспечивает:

- построение образовательного процесса с учётом индивидуальных, возрастных, психологических, физиологических особенностей и здоровья обучающихся;
- формирование готовности обучающихся к саморазвитию и непрерывному образованию;
- формирование активной учебно-познавательной деятельности обучающихся;
- формирование позитивного отношения к познанию научной картины мира;
- осознанную организацию обучающимися своей деятельности, а также адекватное ее оценивание;
- построение развивающей образовательной среды обучения.

Изучение математики направлено на достижение следующих целей:

- системное и осознанное усвоение курса математики;
- формирование математического стиля мышления, включающего в себя индукцию и дедукцию, обобщение и конкретизацию, анализ и синтез, классификацию и систематизацию, абстрагирование и аналогию;
- развитие интереса обучающихся к изучению алгебры и начал математического анализа;
- использование математических моделей для решения прикладных задач, задач из смежных дисциплин;
- приобретение опыта осуществления учебно-исследовательской, проектной и информационно-познавательной деятельности;
- развитие индивидуальности и творческих способностей, направленное на подготовку выпускников к осознанному выбору профессии.

Данная программа предусматривает изучение модулей математики на базовом уровне.

Программа реализует авторские идеи развивающего обучения математики, которое достигается особенностями изложения теоретического материала и системой упражнений на сравнение, анализ, выделение главного, установление связей, классификацию, обобщение и систематизацию.

Личностные, метапредметные и предметные результаты освоения

содержания курса математики

Изучение математики по данной программе способствует формированию у учащихся личностных, метапредметных и предметных результатов обучения, соответствующих требованиям федерального государственного образовательного стандарта среднего общего образования.

Личностные результаты:

- 1) воспитание российской гражданской идентичности: патриотизма, уважения к Отечеству, осознания вклада отечественных учёных в развитие мировой науки;
- 2) формирование мировоззрения, соответствующего современному уровню развития науки и общественной практики;
- 3) ответственное отношение к обучению, готовность и способность к саморазвитию и самообразованию на

- протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- 4) осознанный выбор будущей профессиональной деятельности на базе ориентировки в мире профессий и профессиональных предпочтений; отношение к профессиональной деятельности как к возможности участия в решении личных, общественных, государственных и общенациональных проблем; формирование уважительного отношения к труду, развитие опыта участия в социально значимом труде;
- 5) умение контролировать, оценивать и анализировать процесс и результат учебной и математической деятельности:
- 6) умение управлять своей познавательной деятельностью;
- 7) умение взаимодействовать с одноклассниками, детьми младшего возраста и взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности;
- 8) критичность мышления, инициатива, находчивость, активность при решении математических задач.

Метапредметные результаты:

- 1) умение самостоятельно определять цели своей деятельности, ставить и формулировать для себя новые задачи в учёбе;
- 2) умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;
- 3) умение самостоятельно принимать решения, проводить анализ своей деятельности, применять различные методы познания;
- 4) владение навыками познавательной, учебно-исследовательской и проектной деятельности;
- 5) формирование понятийного аппарата, умения создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации;
- 6) умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;
- 7) формирование компетентности в области использования информационно-коммуникационных технологий;
- 8) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни:
 - умение самостоятельно осуществлять поиск в различных источниках, отбор, анализ, 9) систематизацию и классификацию информации, необходимой для решения математических проблем, представлять её в понятной форме; принимать решение в условиях неполной или избыточной, точной или вероятностной информации; критически оценивать и интерпретировать информацию, получаемую из различных источников;
- 10) умение использовать математические средства наглядности (графики, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
- 11) умение выдвигать гипотезы при решении задачи, понимать необходимость их проверки;
- 12) понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

Предметные результаты:

- 1) осознание значения математики для повседневной жизни человека;
- 2) представление о математической науке как сфере математической деятельности, об этапах её развития, о её значимости для развития цивилизации;
- 3) умение описывать явления реального мира на математическом языке; представление о математических понятиях и математических моделях как о важнейшем инструментарии, позволяющем описывать и изучать разные процессы и явления;
- 4) представление об основных понятиях, идеях и методах математики;
- 5) представление о процессах и явлениях, имеющих вероятностный характер, о статистических закономерностях в реальном мире, об основных понятиях элементарной теории вероятностей; умение находить и оценивать вероятности наступления событий в простейших практических ситуациях и основные характеристики случайных величин;
- 6) владение методами доказательств и алгоритмов решения; умение их применять, проводить доказательные рассуждения в ходе решения задач;
- 7) практически значимые математические умения и навыки, способность их применения к решению математических и нематематических задач;
- 8) владение навыками использования компьютерных программ при решении математических задач.

Планируемые результаты обучения математике (базовый уровень) в 10 - 11 классах

Числа и величины

Выпускник научится:

- оперировать понятием «радианная мера угла», выполнять преобразования радианной меры в градусную и градусной меры в радианную;
- оперировать понятием «комплексное число», выполнять арифметические операции с комплексными числами;
- изображать комплексные числа на комплексной плоскости, находить комплексную координату числа.

Выпускник получит возможность:

- использовать различные меры измерения углов при решении геометрических задач, а также задач из смежных дисциплин;
- применять комплексные числа для решения алгебраических уравнений.

Выражения

Выпускник научится:

- оперировать понятиями корня n- \tilde{u} степени, степени с рациональным показателем, степени с действительным показателем, логарифма;
- применять понятия корня n- \check{u} степени, степени с рациональным показателем, степени с действительным показателем, логарифма и их свойства в вычислениях и при решении задач;
- выполнять тождественные преобразования выражений, содержащих корень n-й степени с рациональным показателем, степени с действительным показателем, логарифма;
- оперировать понятиями: косинус, синус, тангенс, котангенс угла поворота, арккосинус, арксинус, арктангенс и арккотангенс;
- выполнять тождественные преобразования тригонометрических выражений.

Выпускник получит возможность:

- выполнять многошаговые преобразования выражений, применяя широкий набор способов и приёмов;
- применять тождественные преобразования выражений для решения задач из различных разделов курса.

Уравнения и неравенства

Выпускник научится:

- решать иррациональные, тригонометрические, показательные и логарифмические уравнения, неравенства и их системы;
- решать алгебраические уравнения на множестве комплексных чисел;
- понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;
- применять графические представления для исследования уравнений.

Выпускник получит возможность:

- овладеть приёмами решения уравнений, неравенств и систем уравнений; применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;
- применять графические представления для исследования уравнений, неравенств, систем уравнений, содержащих параметры.

Функции

Выпускник научится:

- понимать и использовать функциональные понятия, язык (термины, символические обозначения);
- выполнять построение графиков функций с помощью геометрических преобразований;
- выполнять построение графиков вида $y = \sqrt[n]{x}$, степенных, тригонометрических, обратных тригонометрических, показательных и логарифмических функций;

- исследовать свойства функций;
- понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.

Выпускник получит возможность:

- проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера;
- использовать функциональные представления и свойства функций для решения задач из различных разделов курса математики.

Элементы математического анализа

Выпускник научится:

- понимать терминологию и символику, связанную с понятиями производной, первообразной и интеграла;
- решать неравенства методом интервалов;
- вычислять производную и первообразную функции;
- использовать производную для исследования и построения графиков функций;
- понимать геометрический смысл производной и определённого интеграла;
- вычислять определённый интеграл.

Выпускник получит возможность:

- сформировать представление о пределе функции в точке;
- сформировать представление о применении геометрического смысла производной и интеграла в курсе математики, в смежных дисциплинах;
- сформировать и углубить знания об интеграле.

Геометрия

Выпускник научится:

- оперировать понятиями: точка, прямая, плоскость в пространстве, параллельность и перпендикулярность прямых и плоскостей;
- распознавать основные виды многогранников (призма, пирамида, прямоугольный параллелепипед, куб);
- изображать геометрические фигуры с помощью чертёжных инструментов;
- извлекать информацию о пространственных геометрических фигурах, представленную на чертежах;
- применять теорему Пифагора при вычислении элементов стереометрических фигур;
- находить объёмы и площади поверхностей простейших многогранников с применением формул;
- распознавать тела вращения: конус, цилиндр, сферу и шар;
- вычислять объёмы и площади поверхностей простейших многогранников и тел вращения с помощью формул;
- оперировать понятием «декартовы координаты в пространстве»;
- находить координаты вершин куба и прямоугольного параллелепипеда;
- находить примеры математических открытий и их авторов, в связи с отечественной и всемирной историей;
- понимать роль математики в развитии России.

Выпускник получит возможность:

- применять для решения задач геометрические факты, если условия применения заданы в явной форме;
- решать задачи на нахождение геометрических величин по образцам или алгоритмам;
- делать плоские (выносные) чертежи из рисунков объёмных фигур, в том числе рисовать вид сверху, сбоку, строить сечения многогранников;
- извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах;
- применять геометрические факты для решения задач, в том числе предполагающих несколько шагов решения;
- описывать взаимное расположение прямых и плоскостей в пространстве;
- формулировать свойства и признаки фигур;
- доказывать геометрические утверждения;
- задавать плоскость уравнением в декартовой системе координат;
- владеть стандартной классификацией пространственных фигур (пирамиды, призмы, параллелепипеды);

- использовать свойства геометрических фигур для решения задач практического характера и задач из других областей знаний;
- решать простейшие задачи введением векторного базиса.

Элементы комбинаторики, вероятности и статистики

Выпускник научится:

- решать комбинаторные задачи на нахождение количества объектов или комбинаций;
- применять формулу бинома Ньютона для преобразования выражений;
- использовать метод математической индукции для доказательства теорем и решения задач;
- использовать способы представления и анализа статистических данных;
- выполнять операции над событиями и вероятностями.

Выпускник получит возможность:

- научиться специальным приёмам решения комбинаторных задач;
- характеризовать процессы и явления, имеющие вероятностный характер.

Содержание курса математики 10 - 11 классов

Числа и величины

Радианная мера угла. Связь радианной меры угла с градусной мерой.

Расширение понятия числа: натуральные, целые, рациональные числа, действительные, комплексные числа. Комплексные числа и их геометрическая интерпретация. Сопряжённые комплексные числа. Действительная и мнимая части, модуль и аргумент комплексного числа. Алгебраическая и тригонометрическая формы записи комплексных чисел. Арифметические операции с комплексными числами. Натуральная степень комплексного числа. Формула Муавра.

Выражения

Корень n- \tilde{u} степени. Арифметический корень n- \tilde{u} степени. Свойства корня n- \tilde{u} степени. Тождественные преобразования выражений, содержащих корни n- \tilde{u} степени. Вынесение множителя из-под знака корня. Внесение множителя под знак корня.

Степень с рациональным показателем. Свойства степени с рациональным показателем. Тождественные преобразования выражений, содержащих степени с рациональным показателем.

Косинус, синус, тангенс, котангенс угла поворота. Основные соотношения между косинусом, синусом, тангенсом и котангенсом одного и того же аргумента. Формулы сложения. Формулы приведения. Формулы двойного и половинного углов. Формулы суммы и разности синусов (косинусов). Формулы преобразования произведения в сумму. Тождественные преобразования выражений, содержащих косинусы, синусы, тангенсы и котангенсы. Арккосинус, арксинус, арктангенс, арккотангенс. Простейшие свойства арккосинуса, арксинуса, арктангенса, арккотангенса, арккотангенса.

Степень с действительным показателем. Свойства степени с действительным показателем. Тождественные преобразования выражений, содержащих степени с действительным показателем.

Логарифм. Свойства логарифмов. Тождественные преобразования выражений, содержащих логарифмы.

Уравнения и неравенства

Область определения уравнения (неравенства). Равносильные уравнения (неравенства). Равносильные преобразования уравнений (неравенств). Уравнение-следствие (неравенство-следствие). Посторонние корни.

Иррациональные уравнения (неравенства). Метод равносильных преобразований для решения иррациональных уравнений (неравенств). Метод следствий для решения иррациональных уравнений.

Тригонометрические уравнения (неравенства). Основные тригонометрические уравнения (неравенства) и методы их решения. Тригонометрические уравнения, сводящиеся к алгебраическим. Однородные уравнения первой и второй степеней. Решение тригонометрических уравнений методом разложения на множители.

Показательные уравнения (неравенства). Равносильные преобразования показательных уравнений (неравенств). Показательные уравнения (неравенства), сводящиеся к алгебраическим.

Логарифмические уравнения (неравенства). Равносильные преобразования логарифмических уравнений (неравенств). Логарифмические уравнения (неравенства), сводящиеся к алгебраическим.

Решение алгебраических уравнений на множестве комплексных чисел. Основная теорема алгебры.

Функции

Наибольшее и наименьшее значения функции. Чётные и нечётные функции. Свойства графиков чётной и нечётной функций.

Построение графиков функций с помощью геометрических преобразований (параллельных переносов, сжатий, растяжений, симметрии).

Обратимые функции. Связь возрастания и убывания функции с её обратимостью. Взаимно обратные функции. Свойства графиков взаимно обратных функций.

Степенная функция. Степенная функция с натуральным (целым) показателем. Свойства степенной функции с натуральным (целым) показателем. График степенной функции с натуральным (целым) показателем.

Функция $y = \sqrt[n]{x}$. Взаимообратность функций $y = \sqrt[n]{x}$ и степенной функции с натуральным показателем. Свойства функции $y = \sqrt[n]{x}$ и её график.

Периодические функции. Период периодической функции. Главный период. Свойства графика периодической функции.

Тригонометрические функции: косинус, синус, тангенс, котангенс. Знаки значений тригонометрических функций. Чётность и нечётность тригонометрических функций. Периодичность тригонометрических функций. Свойства тригонометрических функций. Графики тригонометрических функций.

Обратные тригонометрические функции. Свойства обратных тригонометрических функций и их графики.

Показательная функция. Свойства показательной функции и её график.

Логарифмическая функция. Свойства логарифмической функции и её график.

Элементы математического анализа

Предел функции в точке. Непрерывность. Промежутки знакопостоянства непрерывной функции. Непрерывность рациональной функции. Метод интервалов.

Задачи, приводящие к понятию производной. Производная функции в точке. Таблица производных. Правила вычисления производных. Механический и геометрический смысл производной. Уравнение касательной к графику функции. Признаки возрастания и убывания функции. Точки экстремума функции. Метод нахождения наибольшего и наименьшего значений функции. Построение графиков функций.

Первообразная функция. Общий вид первообразных. Неопределённый интеграл. Таблица первообразных функций. Правила нахождения первообразной функции. Определённый интеграл. Формула Ньютона — Лейбница. Методы нахождения площади фигур и объёма тел, ограниченных данными линиями и поверхностями.

Элементы комбинаторики, вероятности и статистики

Метод математической индукции. Упорядоченное множество. Перестановки, размещения, сочетания (комбинации). Формула бинома Ньютона. Биномиальные коэффициенты и треугольник Паскаля.

Вероятность случайных событий. Операции над событиями. Несовместные события. Условная вероятность. Зависимые и независимые события. Формулы сложения и умножения вероятностей. Схема Бернулли. Случайные величины. Распределение случайной величины с конечным множеством значений и её математическое ожидание.

Геометрия

Решение задач с применением свойств фигур на плоскости. Задачи на доказательство и построение контрпримеров. Использование в задачах простейших логических правил. Решение задач с использованием теорем о треугольниках, соотношений в прямоугольных треугольниках, фактов, связанных с четырёхугольниками.

Решение задач с использованием фактов, связанных с окружностями. Решение задач на измерения на плоскости, вычисление длин и площадей. Решение задач с использованием метода координат.

Фигуры и их изображения (прямоугольный параллелепипед, куб, пирамида, призма, конус, цилиндр, сфера). Основные понятия стереометрии и их свойства. Сечения куба и тетраэдра. Точка, прямая и плоскость в пространстве, аксиомы стереометрии и следствия из них. Взаимное расположение прямых и плоскостей в пространстве. Параллельность прямых и плоскостей в пространстве. Изображение простейших пространственных фигур на плоскости. Расстояния между фигурами в пространстве. Углы в пространстве. Перпендикулярность прямых и плоскостей. Проекция фигуры на плоскость. Признаки перпендикулярности прямых и плоскостей в пространстве. Теорема о трёх перпендикулярах.

Параллелепипед. Свойства прямоугольного параллелепипеда. Теорема Пифагора в пространстве. Призма и пирамида. Правильная пирамида и правильная призма. Прямая пирамида. Элементы призмы и пирамиды. Простейшие комбинации многогранников и тел вращения. Вычисление элементов пространственных фигур (рёбра, диагонали, углы). Цилиндр, конус, сфера и шар. Основные свойства прямого кругового цилиндра, прямого кругового конуса. Изображение тел вращения на плоскости. Представление об усечённом конусе, сечениях конуса (параллельных основанию и проходящих через вершину), сечениях цилиндра (параллельно и перпендикулярно оси), сечениях шара. Развёртка цилиндра и конуса.

Понятие об объёме. Объём пирамиды и конуса, призмы и цилиндра. Объём шара. Подобные тела в пространстве. Соотношения между площадями поверхностей и объёмами подобных тел. Площадь поверхности правильной пирамиды и прямой призмы. Площадь поверхности прямого кругового цилиндра, прямого кругового конуса и шара.

Движения в пространстве: параллельный перенос, центральная симметрия, симметрия относительно плоскости, поворот. Свойства движений. Применение движений при решении задач.

Векторы и координаты в пространстве. Сумма векторов, умножение вектора на число, угол между векторами. Коллинеарные и компланарные векторы. Скалярное произведение векторов. Теорема о разложении вектора по трём некомпланарным векторам. Скалярное произведение векторов в координатах. Применение векторов при решении задач на нахождение расстояний, длин, площадей и объёмов. Уравнение плоскости в пространстве. Уравнение сферы в пространстве. Формула для вычисления расстояния между точками в пространстве.

Алгебра и начала математического анализа в историческом развитии

Развитие идеи числа, появление комплексных чисел и их применение. История возникновения дифференциального и интегрального исчисления. Полярная система координат. Элементарное представление о законе больших чисел.

Тематическое планирование. Алгебра и начала анализа. 10 класс

Noౖ	Тема	Количество часов	Количество контрольных работ
1	Глава 1 Повторение и расширение	12	1
	сведений о функции		
2	Глава 2 Степенная функция	19	1
3	Глава 3 Тригонометрические функции	26	2
4	Глава 4 Тригонометрические уравнения	17	1
	и неравенства		
5	Глава 5 Производная и ее применение	24	2
6	Повторение и систематизация учебного	4	1
	материала		
	итого	102	8

Геометрия. 10 класс

Ŋoౖ	Тема	Количество часов	Количество
			контрольных

			работ
1	Введение в стереометрию	6	1
2	Параллельность в пространстве	15	1
3	Перпендикулярность в пространстве	25	2
4	Многогранники	14	1
5	Обобщение и систематизация знаний	8	1
	учащихся		
	Всего	68	6

Алгебра. 11 класс

No॒	Тема	Количество часов	Количество контрольных работ
1	Глава 1 Показательная и логарифмическая функции	28	2
2	Глава 2 Интеграл и его применение	12	1
3	Глава 3 Элементы комбинаторики. Бином Ньютона	12	1
4	Глава 4 Элементы теории вероятностей	12	1
5	Повторение и систематизация учебного материала	38	1
	итого	102	6

Геометрия. 11 класс

Nº	Тема		Количество часов	Количество контрольных работ
1	Координаты и векторы в пространстве		15	1
2	Тела вращения		25	2
3	Объёмы тел. Площадь сферы		15	2
4	Повторение и систематизация учебного		13	1
	материала			
	·	Всего	68	6